Development of Atomic-Resolution Holography Electron Microscope
OREANDA-NEWS. Hitachi, Ltd. announced that it has developed an atomic-resolution holography electron microscope accelerated at a 1.2-megavolt ("MV") under the government-sponsored FIRST Program project named "Development and Application of an Atomic-resolution Holography Electron Microscope" (Principal Investigator: the late Dr. Akira Tonomura, Acting Principal Investigator: Dr. Nobuyuki Osakabe), and has achieved the world's highest point resolution of 43 picometers ("pm"), i.e., 43 trillionths of a meter.
With its ability to measure electromagnetic fields at the atomic resolution, the developed microscope will contribute to the advancement of fundamental sciences by supporting the development of cutting-edge functional materials, through elucidating quantum phenomena that cause the functions and properties of high-performance materials, such as magnets, batteries, and superconductors.
In recent years, significant progress has been made in the development of technologies that enable the measurement of electromagnetic fields causing the functions and properties in and around materials at atomic resolutions. For example, materials for magnets must have not only high magnetic performance at room temperatures, but they are also required to be usable under high temperatures and high magnetic fields. To develop such magnetic materials, the following procedures are required: evaluation of the atomic arrangements in those materials, determination of their magnetic properties, and acquisition of guiding principles for optimum material compositions and arrangements and manufacturing methods. For these purposes, electron microscopes with higher resolutions have been developed.
In 2000, Hitachi in collaboration with the University of Tokyo developed an 1-MV holography electron microscope financially supported by CREST program of the Japan Science and Technology Agency (JST) and achieved point resolution of 120 pm making it possible to measure electromagnetic fields in the microscopic region.
Furthermore, from 2006 to 2008, Hitachi participated in the MEXT Leading Project and developed a technology for creating high-brightness monochromatic electron beams, resulting in the improvement of the resolution capability of electron microscopes.
On the basis of these technologies, since March 2010, Hitachi has been developing an "atomic-resolution holography electron microscope" that can visualize electromagnetic fields at the atomic level with the support of the FIRST program. To improve the resolution of the microscope to the utmost limit, the following technical developments were made including an increase in the acceleration voltage to 1.2 MV resulting in decrease in electron beam wavelength and installation of a spherical-aberration corrector. The main features of the technologies developed in the current project are described below.
Комментарии