Fujitsu and Tohoku University Develop 3D Tsunami Simulator
OREANDA-NEWS. Fujitsu Limited today announced that, based on its joint research with Tohoku University that began in 2012, the two have developed a 3D tsunami simulator that can replicate in fine detail the surge of water in urban areas as well as river surges caused by a tsunami. The joint research succeeded in combining a 2D tsunami-propagation simulation technology developed by Professor Fumihiko Imamura, director of the International Research Institute of Disaster Science in Tohoku University with Fujitsu's 3D fluid simulation technology. As a result, the researchers were able to accurately replicate the complex changes a tsunami undergoes as it interacts with coastal topography or buildings in urban areas, as well as the process of water surges in urban areas and rivers.
To apply the simulator toward composite disaster forecasting of a tsunami caused by a major earthquake, the researchers plan to use it in the Strategic Programs for Innovative Research (HPCI), promoted by MEXT, in which one of the themes is improved tsunami forecasting techniques using the HPCI computer with the aim of helping make Japan more resilient to disasters.
The 2D tsunami-propagation simulation technology developed by Tohoku University's Professor Imamura is widely used to calculate the arrival time and wave height of a tsunami along coastal areas. However, the problem was in being able to precisely replicate urban inundation and river surges; it was difficult to incorporate 3D data, such as the shapes of buildings or levees, which affect the power of the tsunami and the flow velocity of surges.
On the other hand, Fujitsu's 3D fluid simulation technology uses a smoothed-particle hydrodynamic technique in which fluid is treated as a collection of numerous particles. This gives it the advantage of being able to replicate 3D behavior, such as that of wave breaks and overflow. The problem, however, was the very heavy computing load, making it difficult to perform simulations over a wide area extending from the tsunami source area to a coastal area.
Комментарии